Thursday, May 14, 2020
The Differences Between The And The Method Of The...
4.5 EBLUP In our model (1.1), Z_i b Ãâ_i reflects the difference between the predicted responses in the i-th subjects and the population average. Thus, b Ãâ verse subject indices can be used for identifying the outlying subjects. To assess the sensitiveness of subjects to the homogeneity of the covariance matrices of the random effects, Nobre and Singer develop the method of influence methods from Cook (1986). The idea is to put some weights to the var(b), i.e. var(b) = WG and then calculate |dmax|, which is the normalized eigenvector associated with the direction of largest normal curvature of the influence graph under a perturbation of the covariance matrix of the random effects (for detail, see appendix or Cook (1986)). First, we needâ⬠¦show more contentâ⬠¦Ã ¸_j ) V^(-1) (y-Xà ²) +(y-Xà ²)^T V^(-1) (âËâ^2 V)/(âËâà ¸_k âËâà ¸_j ) V^(-1) (y-Xà ²) -(y-Xà ²)^T V^(-1) âËâV/(âËâà ¸_j ) V^(-1) âËâV/(âËâà ¸_k ) V^(-1) (y-Xà ²) +tr(V^(-1) âËâV/(âËâà ¸_k ) V^(-1) âËâV/(âËâà ¸_j ))-tr(V^(-1) (âËâ^2 V)/(âËâà ¸_k âËâà ¸_j ))} = 1/2{-(y-Xà ²)^T V^(-1) âËâV/(âËâà ¸_k ) V^(-1) âËâV/(âËâà ¸_j ) V^(-1) (y-Xà ²) -(y-Xà ²)^T V^(-1) âËâV/(âËâà ¸_j ) V^(-1) âËâV/(âËâà ¸_k ) V^(-1) (y-Xà ²) +tr(V^(-1) âËâV/(âËâà ¸_k ) V^(-1) âËâV/(âËâà ¸_j ))} as (âËâ^2 V)/(âËâà ¸_k âËâà ¸_j ) = 0 k, j = 1, â⬠¦, q âËâV/(âËâà ¸_i ) = [ââ" (ZWGZ^Tà ¸_i=ãâ¬â"ÃÆ'^2ãâ¬â"_subject@Ià ¸_i=ÃÆ'^2 )] The next step is to find the second derivative of l(à ¸|W) with respect to w and à ¸ evaluated at evaluated at à ¸ = à ¸ Ãâ and w = w0: (âËâ^2 l(à ¸|w))/(âËâw_j âËâà ¸_i ) = 1/2{-(y-Xà ²)^T ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâw_j ) ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâà ¸_i ) V^(-1) (y-Xà ²) +(y-Xà ²)^T ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâw_j âËâà ¸_i ) ãâ¬â"V_wãâ¬â"^(-1) (y-Xà ²) -(y-Xà ²)^T ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâà ¸_i ) ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâw_j ) ãâ¬â"V_wãâ¬â"^(-1) (y-Xà ²) +tr(ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâw_j ) ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâà ¸_i ))-tr(ãâ¬â"V_wãâ¬â"^(-1) (âËâV_w)/(âËâw_j âËâà ¸_i ))} evaluated at à ¸ = à ¸ Ãâ and w = w0 = I, i = 1, â⬠¦, q, j = 1, â⬠¦, q (âËâV_w)/(âËâà ¸_i ) = [ââ" (ZWGZ^Tà ¸_i=ãâ¬â"ÃÆ'^2ãâ¬â"_subject@Ià ¸_i=ÃÆ'^2 )] (âËâV_w)/(âËâw_j âËâà ¸_i ) = âËâ/(âËâw_j ) [ââ" (ZWGZ^Tãâ¬â"ÃÆ'^2ãâ¬â"_subject@IÃÆ'^2 )] = [ââ" (Z âËâW/âËâw GZ^T0@00)] (âËâV_w)/(âËâw_j ) = [ââ" (0â⬠¦0@â⹠®1_(j,j)â⹠®@0â⬠¦0)] Finally, we can calculate F ÃË_i and get the largest absolute eigenvalue, |dmax| for every subject i: F ÃË_i = (âËâV_w)/(âËâw_j âËâà ¸_i )*(âËâ^2 l(à ¸))/(âËâà ¸_k âËâà ¸_j )*(âËâV_w)/(âËâw_j âËâà ¸_i ) |dmax| = The largest absolute eigenvalue of F ÃË_i for i-th subject Plotting |dmax| verse
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.